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This paper describes an approach for the incorporation of set-up times into a
stochastic scheduling algorithm for a FMS. Set-up changes should not be
performed too often because of the resulting reduction of capacity. They
should not be performed too infrequently, because of the resulting increases
of inventories and delays. The goal of the analysis reported here is to
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Abstract
This paper descrbs wz approah for the incorporation of

set-up tines into a stocastic scheduling algorithm for a FMS.
Set-up changes should not be performed too often because of the
resulting reduction of capacity. They should not be performed
too infrevuently, because of the resulting increases of invento-
ries and delays. The goal of the analysis reported here is to
calculate the long-term average frequecies of set-ups and the
frrton of tine the systen should be set up for each part type
or family of part types.

To Appear in the Proceedings of the Second ORSA/TIMS Confer-
ence on Flexible Manufacturing Systems: Operations Research
Models and Applications, edited by K. Stecke and R. Suri.
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I. Introduction

In this paper, we describe an approach for the incorporation
of set-up times into an earlier stochastic scheduling algorithm
(Kimemia,. 1982, and Kimemia and Gershwin, 1983] for a Flexible
Manufacturing System (FMS). As before, the objective is to
develop a feedback law which will respond to and mitigate the
effects of random, potentially disruptive events.

This approach to scheduling differs from conventional mixed
integer programming representations (Graves, 1981). In such
formulations, there are a large number of binary or integer
variables (for example, Afentakis, Gavish, and Karmarkar, 1984;
Karmarkar and Schrage, 1985]. These approaches model the system
in detail, but their large computational requirements make them
difficult to solve and interpret, and adding stochastic phenomena
does not make them any easier. Maxwell and Muckstadt (1985)
simplify the problem by dealing only with reorder intervals
(i.e., set-up frequencies) and ignoring capacity questions. Ku-
siak, Vanelli, and Kumar (1985] treat only the grouping problem.

In the work reported here and in Kimemia (1982) and Kimemia
and Gershwin (1983], the approach is to gain as much information
as possible from a continuous representation of the flow of
material in the system. Only after solving the continuous prob-
lem is the detailed discrete problem treated. The detailed
scheduling problem is then much easier than it would be if it
were treated without first solving the continuous problem.

In that earlier work, however, set-up times were not consi-
dered. That is, it was assumed that no time or cost was required
for changing tools or other resources that are specific to a
limited set of part types. In reality, however, even a FMS has
limitations on its flexibility. The zero-set-up time assumption
may be adequate for a small set of parts comprising a family, but
not for selecting times to change configurations so that a new
family can be produced. By configuration we mean a set of
tooling that limits the FMS to doing operations on a specific
part type or family of part types. To make parts that are in
other families, the configuration must be changed.

In this paper, we assume that there is a non-zero set-up
time. That is, some time is required to change the configuration
of the system from making one part type (or family of part types]
to making another. This is an issue of practical importance
which arises in metal cutting systems, in which tool magazines
can hold only a limited number of tools; printed circuit card
assembly systems in which each insertion machine can hold only a
limited number of types of electronic components; and VLSI fabri-
cation, in which furnaces must be cleared of each kind of impuri-
ty before the next kind of impurity can be used.

It is not desirable to change the configuration too often
because that reduces the amount of time available for productive
work and thus the capacity. On the other hand, it is not desir-

14
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able to change it too infrequently, because that will tend to
S, increase inventories and delays before deliveries. The major

innovation reported here is the explicit calculation of capacity
for scheduling problems with non-zero set-up times.

The goal of the analysis is to calculate the long-term
average frequencies of set-ups and the average fraction of time
that the system is in each configuration (i.e., the fraction of
time it is set up for each part type or family of part types).
Further work at the detailed level is required to translate these
quantities into times at which to perform set-ups.

An essential element of this analysis is the explicit recog-
nition that different events take place at greatly different time
scales. i.e., frequencies. At the higher level of the scheduling
hierarchy, we calculate set-up frequencies, average production
rates, and other long term quantities. The lower level has the
responsibility of choosing times to perform set-ups and dispatch
parts in a way that agrees with the high level rates. Because
the high level analysis has no way of determining exactly when a
set-up will take place, but instead only the rates of set-ups, it
is reasonable to use the tools of probability.

The relationship of this work to longer and shorter term
issues is described in Gershwin (1986).

In Section 2. we describe a formulation in which the set-up
frequency is much less that that of the failures and repairs and

_ production operations. Two examples are worked out in Section 3.
Section 4 briefly describes the modifications to the analysis
when set-up frequencies are comparable to repair and failure
frequencies. We conclude in Section 5.

2. Infrequent Set-Ups

In this section, we consider the problem of devising a
feedback law for the scheduling of a FMS. We wish to find the
optimal production rate for each part type and the frequencies of
set-ups. We also seek the fraction of time that the system
spends in each configuration.

Time Scales

We assume that set-up time is not negligible compared to
operation time. The horizon is long enough so that reliability
behavior (i.e., repairs and failures of machines) may be replaced
by average machine efficiency (or possibly by a random variable
indicating the amount of material produced during an interval.
parts are made often enough so that part flow may be approximated
by a continuous function of time; and set-ups occur very many
times during the problem horizon. The problem may be assumed to
have at least two important time scales. The short time scale is
that of machine failures and repairs which is treated by Kimemia
and Gershwin (1983) and Gershwin. Akella, and Choong (1985). In
that time scale, the system configuration never changes and so

t t. t.i e... - so
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set-ups never occur. Changes in configuration take place over
the long time scale.

Notation

S = continuous long time scale index variable.

Sink =the time required to change configuration from m to
k; this is specified.

wm = the fraction of time the system is in configuration m (not
including time during set-ups); this is a decision variable.

fm k = the frequency that the configuration changes from m to k.
That is, fm 6S is the probability that an observer sees the system
c!:ange from configuration m to configuration k during the inter-
val [S, S + 6S); this is a decision variable.

Onk = the frequency that the configuration changes from m to k
while system is in configuration m. That is, pmk6S is the proba-
bility that an observer sees the system in configuration m change
from configuration m to configuration k during the interval (S.
S + S; this is a decision variable. Note that

fMk = Omk WM (2.1)

Basic Equations for Set-up Times in a Stochastic Environment

By accounting for the total time the system can be in any
configuration or having its configuration changed, we have

Xwm + 2Smkfmk (1 2.2)m m~k

The fraction of time wk(S) that the system is in config-
,iration k at time S satisfies

Wk(S+bS) = Wk(S) + mk Wm(S)6S - km Wk(S)6S
m~k mofk

Then, in steady state,

mMk w.= ( Z 0.)w. (2.3)

Interpretation

Equations (2.1]-(2.3) are similar to the equations for the
steady-state probability distribution of a Markov process (in
which wm is analogous to the probability of finding the system
in state m, and 4mk6S is the probability of a transition
from m to k in an interval of length 6S.) The principal differ-
ence is the set-up time term in (2.21, which prevents the proba-
bilities from summing to unity.

Iq
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In the usual context, 0 Mk is known. There are then
, enough equations to determine Wm (except in singular cases).

Here, however, both 0mk and wM  must be determined.
Additional information is required.

Production Requirements, Capacity Constraints, and Inventory

Frequent set-ups reduce capacity and make production re-
uirements infeasible. Infrequent set-ups increase cycle times
the time a part spends in the factory) and inventory. To de-

scribe these issues, we must introduce additional notation. The
subscript L refers to long time scale quantities, to distinguish
quantities here from similar short term quantities in Kimemia and
Gershwin (1983], Gershwin, Akella, and Choong (1985), and Akella,
Choong, and Gershwin (1984].

Ti.(m) the time that part type j requires at machine i
while the system is in configuration m; this is specified.

u . = the production rate of type j parts while the system is in
configuration m; this is a decision variable.

fl = the long time scale capacity set. The long time
scale production rate vector satisfies the long time scale capa-
city constraints:

tS E = (U I uj-.T ijim) ui < Eai} (2.4)

while the system is in configuration m. Here a, refers to the
repair state of machine i. and Eo is the average availability
of machine i over the time scale treated here. This issue and
notation are discussed in Kimemia and Gershwin (1983) and
Gershwin, Akella, and Choong (1985).

dLj= the long term average demand for part type j; this is
, specified. In order to satisfy demand, we must have

di W. 't,. (2.5)

Equation (2.2) indicates that as fMk increases, wm
decreases. If wm is too small (i.e., if the system does not
spend enough time producing), then (2.5] may not be satisfied for
any feasible u. Therefore, (2.5) imposes an upper limit on set-
up frequency.

xLJ[S) = the difference between cumulative production and
cumulative demand for type j at time S; this is a decision vari-
able.

The dynamics of x are

S"
• 

..

.
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"tJ - adL}. (2.6)

where r(S) is the configuration at time S.

An optimization problem is (2.1}-(2.4), (2.6), and

J(x{(S) = gx(xL(s)]ds (2.7)

where g is a measure of cost of surplus (x positive) or backlog
(x negative). This is similar to the problem in Kimemia and
Gershwin (1983) in which flow rates are chosen to respond to
changes in machine repair states, rather than configurations.

Implementation: The solution is ut(S], w, and f or
0. 0 indicates how frequently to change configurations.
An algorithm must be found to determine the actual set-up in-
stants so that the actual frequencies are as close to this as
possible. One possible approach is to follow the earlier Ger-
shwin, Akella, and Choong (1985) method for the lower level.
lere, we let

Win(S) w S. (2.8)

This is the calculated amount of time that the system should have
been in configuration m in (0,S). Let Wm(S) be the actual
amount of time the system has been in configuration m between
times 0 and S. Change the configuration to m whenever

WN_(S) Wa(S). (2.8)

An alternative rule would be to change set-ups when all thext, of the current configuration have reached a

specified value.

Relationship with earlier work: Figure 2.1 shows the rela-
tionship of the work described in this appendix with the earlier
(Kimemia and Gershwin, 1983) algorithm. The long term average
demand rate dL is specified. at a still higher level. The
problem (2.7) is solved and the results are used in two ways: uT
is used as the demand rate d for the lower level algorithm; and 0
and w are used to calculate set-up frequencies and actual set-up
times. When the configuration (m) and the average demand rate d
are specified, the lower level (k-g) algorithm can be run.

3. Examples with Infrequent Set-Ups

Example I

Consider a flexible manufacturing system that makes three
part types in two configurations. The system consists of one
machine that has holders for two different tools. In configura-
tion 1, the system can make types I and 2; in configuration 2, it
can make types 1 and 3. It takes one hour on the average to do

.. . . . . . . . . . . .. . . . .
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an operation on any part (after reliability is taken into ac-
:/ count), so the capacity sets are:

For m=l,

l + 2l (3.1)

where the superscript refers to the system configuration, and for
m= 2,

+ u2  - 1 + (3.2

The demands are di = .3; d2 = .2; d3 = .4 parts per hour.
Instead of considering the dynamic optimization problem, we treat
the system in steady state. To satisfy demand, we must have

w1ul + w2u
l :.3

w1ul .2 (3.3)

w 2u2 .4

Because there are only two configurations, and because we
assume that the system is in steady state, (2.3) becomes

012W, = 021W 2 . (3.4)

It takes s12 hours to change the tools from configuration I
to 2, and s2, hours to change back. The normalization
equation (2.2] is then

W} + W2 + S 120 12W 1 4 S210 21W 2 = I (3.5)

The last two equations imply that

W 1 = 1 012

012 (21 1 2 2 1

[3.6)
I

W2- 1 21
+- j7 + S12 +S 21

02021 2

Equation (3.3) now becomes

u1+ ! -= .3r4-L + _L+ S 12 + S 1 (3.7)
012 021 012 021 )

012 = A2 -L + +S12 + S21 )(3.8)012 1}2 021 S2 S2
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u- , .4 + + S2 + S21 (3.9]021 (012 021 2 S2"'-

From (3.3),

WI + W 2 > .9 (3.10)

or,

I + L < 9(s12  + S21 (3.11]
012 021

Instead of dealing with optimization problem (2.7), we as-
sume that (3.1], (3.21. and (3.!1] are satisfied with equality.
We now have 6 equations ((3.1), (3.2), (3.7), (3.8], (3.9),
(3.11]] in 6 unknowns (ul, u1, u2, u2, 0 2 02 However, there is
one redundant equation among them. The additional equation can
be supplied by a simplified lower level model in which we mini-
mize an estimate of the buffer space required due to batching.
The results are

wI = W 2 = 45

2012 021 9 S12 + sI"

9, 9 ~ U2 5

2 1 81~ u 9:

The system's operation proceeds as follows: it may start in
configuration 1. for example, producing type I and 2 pieces
at rate 5/9 and 4/9 pieces per hour, respectively. These
quantities are averages since we have assumed that the system
actually suffers numerous repairs and failures while it is in
each configuration. After about 2/(9(s 1 2 + s20]) hours, we start
changing over to configuration 2. This takes s,2
hours. Production starts up again in configuration 2 in
which type I and 3 pieces are made at rates 1/9 and 8/9
pieces per hour. The system stays in this configuration for
about 2/(9(s1 2 + s 2,1) hours, and then the next changeover begins.
It takes s2l hours and the system is in configuration 1
again.

Note that only the sum of the set-up times si2 + s21 is
important in this problem, and not the individual times. As the
sum increases, set-ups are performed less often.

The decision of precisely when the changeover will take
place is left up to the lower level. The quantities calculated
here are requirements that the lower level must satisfy.

. . . . -.. . . . . ... . . . ... . .. .. ... .. .... ,
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Example 2

Consider a machine that does operations on three classes of
parts: finished (type I parts), semi-finished [type 2), and rough
(type 3). The same tool can be used for any of the parts, but it
is worn by use. Once it is used for semi-finished operations, it
cannot be used for finished operations; and once it is used for
rough operations, it cannot be used for finished or semi-finished
operations. Thus, there is no changeover time in changing from
finished to semi-finished or semi-finished to rough operations,
since there is no tool change involved. Any other change does
cost some time. Assume that the operation times and set-up times
(when non-zero) are all 10 minutes. Thus

( 10, if i . (3.12)

co, otherwise

and

S12 =S13 =$2 3  0
(3.13)s21 =s31 =s32 10

Assume

di = .02
=d2  .0 3 parts per minute. (3.14)

d- =.04

This implies that

0 _ u S .1 wiu1 = .02
0 - u2 - .1 and w 2u2 = .03 (3.15)
0 - u 3 S .I w3 u3 = .04

If we assume that u, is always at its maximum value, then

W1 .2
w 2 = .3 (3.16)

W3 =.4

This implies that (2.2) can be written

2021 + 303 + 332 .( (3.17)

Equation (2.3) becomes, in this example,

32 + 4o3 = 2o + 2o (3.18)

2 o12 + 40 32 = 3021 + 3o023 . (3.19)

There is a third equation in (2.3], but it is implied by the
previous two.

Instead of solving the optimization problem (2.71, we make

S6. . . . . ,.. . . .,.. . . . . . . . . . . . . . . . . . . . .- , -:,;. ...
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the following simplifying assumption: on the average, during
each period that the system is in configuration j (i.e., capableof operating on type j parts), it produces Kdj type j parts. "

Since the average length of time it is in configuration 1 is
1

012 + O 3

and the average production rate in that state is .1, then

.1 .02K. (3.20)
012 0 3

Similarly,

.1 .03K (3.21)
021 + 023

.1 = .04K . (3.22)
+ 032

The solution is:

0 10.625 .075 (3.23)
12 - K

20 (3.24)023 =3 12

0= 102(3.25)

021 .5 3.725 (3.26]: K
021 = K 2

(3.27)
0132 021

032 01 (3.28]

in which

75 K 4253

so that all quantities above are non-negative. The solution is
still not quite complete; the quantity K must be determined.

Interpretation

The solution has isolated two set-up cycles; 1 - 2 - 3 - I
- and 2 - I - 3 - 2. The first requires less set-up time, but the

second may be preferred sometimes. The system's behavior will be
. a mixture of the two cycles. The cycle to be chosen at any time

may depend on the amount of each part type that has been pro-
duced.

Other cycles are possible, such as I - 2 - I. These partial
cycles are not sufficient by themselves, but they may be selected
if, for example, the production of type 3 parts is in excess
compared with types I and 2.
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4. More Frequent Set-Ups

In Sections 2 and 3, changes of configurations are assumed
to be much less frequent that machine failures and repairs. In
cases where these events occur at about the same frequencies, we
can modify the definition of "configuration" to include failure
state. That is, m now refers not only to the kind of tooling
present at any instant, but also the failure state of the system.
It includes a as defined by Kimemia and Gershwin (1983].

The equations of Section 2 are largely unchanged, but they
must be interpreted differently since the time scale is shor-
ter. Some components of 0 are specified quantities: the
repair and failure rates of some machines. The rest are decision
variables with the same meanings as in Sections 2 and 3.

Equation (2.4) must be modified as follows:

um E jm _ (U I U,-,X Tj(jm] uj 5 ci(m) (4.1]

where a(m) is the repair state of machine i corresponding to
configuration m.

5. Conclusion

This paper suggests an approach to incorporating set-up
,- times into the earlier Kimemia-Gershwin scheduling method for
. unreliable FMS's. It follows the strategy of sidestepping the

detailed combinatorial analysis that would be required if we
represented each set-up event and each part explicitly. Instead,
we deal with the rates of these events, and this greatly reduces
the computational load.

Future work includes the development of the lower level
algorithms. These algorithms must carry out the guidelines cal-
culated here. It also includes the understanding of set-up
cycles described in Example 2. Other related work is devising
strategies for assigning parts to families; that is, deciding
what will each configuration be able to do. Finally, the widely
used concept of hierarchical decomposition of scheduling algo-
rithms should be examined, so that there is a systematic method
for assigning issues to hierarchical levels.
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